青海PVDF拉膜蓬可定制加工
张拉式膜结构以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达安定的形式。除了可实践具有创意、创新且美观的造型外,也是最能展现膜结构精神的构造形式。近年来,大型跨距空间也多采用以钢索与压缩材料构成钢索网来支撑上部膜材的形式。其施工精度要求高,结构性能强,且具丰富的表现力。
膜材料的类型及特点膜结构的发展与膜材料的研发和应用密不可分。常见的膜材有PVC、PTFE、ETFE膜材。目前应用的建筑膜材主要包括涂层织物类膜材和热塑化合物类膜材两大类。涂层织物类膜材是由高强度纤维织成的基材和聚合物涂层构成的复合材料。其中基层是受力构件,起承受并传递荷载的作用,其品种有聚酯纤维、玻璃纤维等;涂层有聚四氟乙烯(PTFE)、硅酮、聚氯乙烯(PVC)等。热塑化合物类膜材主要指乙烯-四氟乙烯共聚物(ETFE)。
索膜结构作为新的建筑形式自出现,是到了 20 世纪 70 年代以后,索膜结构的应用得到了迅速发展,在国外已逐渐应用于体育建筑、商场、展览中心、交通服务设施等大跨度建筑中,膜结构的出现为建筑师们提供了超出传统建筑模式以外的新选择。ETFE又称氟塑膜,是一种新兴的建筑材料,由乙烯和四氟乙烯共聚而成,具有高透光率(可见光透光率在90%以上,且衰减很慢,经使用10-15年,仍可保持在90%以上)和强的耐候性,抗静电,尘染轻,但价格昂贵,废膜须厂家回收处理。ETFE膜具有较高的熔化温度,的化学,电学和高能辐射抵抗性能。当燃烧时,氟塑膜释放氢氟酸。ETFE的另一个关键用途是覆盖在高应力,低烟气毒性,和高性环境中使用的电气和光纤布线。飞机和航天器接线是主要例子。一些小截面导线如用于绕线技术的导线涂有ETFE。ETFE膜的实际使用始于上世纪90年代,主要作为农业温室的覆盖材料、各种异型建筑物的篷膜材料,英国新千年应典工程之一的“伊甸园”有“世界第八大奇观”之美誉。
如上所述,充气膜结构需要在膜的内部和外部气体之间产生气压差,此时所需的气压差值,在气承式充气膜结构和气胀式管状充气膜结构中有很大不同。通常,在气承式充气膜结构中,采用0.002-0.010kg/cm2、(水柱20~100mm)的气压差,此气压差值不需要根据建筑物规模的大小而改变。与此相对,气胀式管状充气膜结构中,所需的气压差为01~1kg/cm2(水柱1000~10000mm),在同样形状的梁(或者拱)中, 随着建筑物规模的增大,所需要的气压差也随之增大。也就是说,气胀式管状充气膜结构与气承式充气膜结构相比力学效率较低。为了弄清楚效率较低的原因,对气压差产生张力的平面膜与空气梁上施加相同荷载作用下的状况进行研究(图3)。拿出荷载作用下产生变形的膜的一部分进行研究(图4),膜的张力由于膜的变形会产生向上的力,膜有回到原先状态的趋势。相同条件下对充气梁的一部分进行研究(图5),充气梁的膜外皮,会产生与平面膜相同的向上的力,但是梁内压缩空气的压力反而产生方向向下的力,使得充气梁的膜回到原先形态的趋势被抵消。这就是气胀式充气膜结构与气承式充气膜结构相比效率较低的原因。将平面膜与充气梁弯曲,即做成充气穹顶和充气拱,这种关系一点也没改变,也就是说,与充气穹顶相比,充气拱说是效率较低的结构。尽管这样,使用充气拱结构,是因为这种结构具有特定的优点。充气穹顶经常保持穹顶内部与外部空气的气压差,出人穹顶时,一定要通过空气密闭出入口(旋转门与前室等),会感觉不方便。与此相对,充气拱结构的室内气压与室外气压相同,出入口自由地开放。并且,以前述富士群馆为例可以看出,气胀式充气拱结构可以形成与气承式充气穹顶结构不同的建筑造型。由于以上这些理由,预计气承式充气膜结构与气胀式充气膜结构今后将共同发展。